
1.  Introduction
Playas are shallow, depressional wetlands in the western Great Plains that are critical wildlife habitats and 
sources of groundwater recharge (Smith, 2003). They are essential migratory stopover and wintering habitat 
for wetland-dependent birds in the Central Flyway (Bolen et al., 1989; Davis & Smith, 1998). These tempo-
rary wetlands are the lowest point of their own watershed and are filled by intense local precipitation from 
convective storms. Water is lost through a combination of evapotranspiration and infiltration into the High 
Plains aquifer (Gurdak & Roe, 2010), a critical and rapidly depleting source of groundwater for agricultural 
irrigation (Haacker et al., 2016; Steward et al., 2013).

As a result of their semi-arid ecosystem, playas have extended wet-dry cycles, on average only becoming wet 
once every 11 years (Johnson et al., 2011), but this average masks the wide annual variation in inundation 
status throughout the region. Furthermore, climate futures for the western Great Plains are warmer, with 
potential changes in precipitation and humidity that could alter playa hydrology (Ojima et al., 2015; Ojima 
& Lackett,  2002). Understanding the spatial and temporal patterns of playa inundation—and the abili-
ty to predict these patterns into the future—is essential for effective, long-lasting playa conservation. For 
example, understanding historical patterns of wetness and projecting to the future will allow for targeted 
conservation to regions that are important now due to their current inundation patterns and regions that 
will become more important as climate continues to change. Predicting these changes would enable better 
climate adaptation and risk evaluation for playa-associated wildlife populations.

Abstract In the Great Plains, playas are critical wetland habitats for migratory birds and a source of 
recharge for the agriculturally important High Plains aquifer. The temporary wetlands exhibit complex 
hydrology, filling rapidly via local rain storms and then drying through evaporation and groundwater 
infiltration. Using a long short-term memory (LSTM) neural network to account for these complex 
processes, we modeled the probability of playa inundation for 71,842 playas in the Great Plains from 
1984 to 2018. At the level of individual playas, the model achieved an F1-score of 0.522 on a withheld 
test set, displaying the ability to predict complex inundation patterns. When simulating playa inundation 
over the entire region, the model is able to very closely track inundation trends, even during periods of 
drought. Our results demonstrate potential for using LSTMs to model complex hydrological dynamics. 
Our modeling approach could be used to model playa inundation into the future under different climate 
scenarios to better understand how wetland habitats and groundwater will be impacted by changing 
climate.

Plain Language Summary Playas are small, rain-fed lakes typically found in the Great Plains 
of the US. Most of the time, they are dry, but when filled they provide important wetland habitat for 
migrating birds. As the water drains from the playas, they help to recharge the High Plains aquifer, which 
provides much of the water for agriculture in the region. We used a machine learning model to predict 
when individual playas are wet and when they are dry using weather, playa size, and information about 
the land use adjacent to each playa. Our model can accurately predict when playas fill and drain, valuable 
information for conservation efforts in the region. This research can be used by conservation managers 
and land-owners to help protect these critical wetlands.
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A variety of previous efforts have focused on predicting inundation as a function of weather, land cover, and 
other factors (Bartuszevige et al., 2012; Cariveau et al., 2011; Johnson et al., 2011; Uden et al., 2015). For 
example, Bartuszevige et al. (2012) used a generalized linear mixed model (GLMM) to predict inundation 
and found positive associations with 14-day precipitation, precipitation variance, playa size, and the slope 
of surrounding terrain. However, these studies are limited spatially and temporally (both within and among 
years) and thus extrapolation to the entire playa region or across years is problematic.

Advances in analyzing remotely sensed imagery have allowed scientists to investigate patterns of inun-
dation over longer time periods and broader spatial scales. Research has leveraged Landsat 5 satellite ob-
servations to investigate how land cover and land cover change relates to inundation, uncovering longer 
hydroperiod in urban settings and shorter hydroperiod in croplands, rangelands, and grasslands (Collins 
et al., 2014; Starr & McIntyre, 2020). Common to many of these efforts is the notion that if we can predict 
historical inundation status as a function of temperature, precipitation, and spatial context, we may be able 
to predict future inundation and allow for more effective playa conservation.

Two recent innovations motivate our approach for modeling playa inundation. First, the availability of a 
long term (1984–2019) monthly water history data set—the JRC Monthly Water History v1.2, hereafter 
JRC data—provides a novel source of inundation data across the entire playa region (Pekel et al., 2016). 
Second, the rise of deep learning over the past decade provides new tools for leveraging weather and spa-
tial context to predict playa inundation. In particular, long short-term memory (LSTM) neural networks 
(Hochreiter & Schmidhuber, 1997), have gained traction in a variety of sequence modeling tasks including 
natural language processing and time series modeling. Time series applications of LSTMs for hydrology 
include rainfall-runoff modeling (Kratzert et al., 2018; Li et al., 2020), lake and stream temperature mod-
eling (Daw et al., 2020; Rahmani et al., 2021), soil moisture forecasting (Fang et al., 2017), sewer overflow 
(Zhang et al., 2018), and more (Shen, 2018). LSTMs account for both long and short range time dependence 
and nonlinear relationships between inputs and outputs. Because these are neural networks, we can also 
integrate categorical feature embeddings to mop up residual variation and improve predictive power for 
observed units (Guo & Berkhahn, 2016).

Here, we present a monthly inundation model across the playa region that builds upon previous inundation 
work to evaluate how well we can predict inundation as a function of climate, land cover, and playa-specific 
features. The LSTM model predicts inundation status derived from the intersection of JRC monthly water 
history with known playas as a function of high resolution historical climate data and land cover. The re-
sulting model provides high-quality monthly predictions of inundation at the playa level while also captur-
ing broad-scale regional patterns in inundation. This provides a key step toward an approach that predicts 
future inundation status and facilitates more effective playa conservation.

2.  Methods
2.1.  Data Collection and Preprocessing

The Playa Lakes Joint Venture (PLJV) probable playa data includes 71,842 playa polygons along with key 
attributes: size, estimated frequency of inundation, distance to the nearest road in feet, and binary flags for 
if they have been hydrologically modified, if they have been farmed around or through, if they are healthy 
(playas are considered “healthy” if they are not modified and not farmed around or through), and if they 
belong to a cluster of playas (PLJV, 2019). The layer also includes the name of the author's organization for 
each playa (who added it to the database).

For our target variable, we calculated playa inundation for every month of the Landsat-based 30-m JRC 
Global Surface Water product from March 1984 through December 2018 using Google Earth Engine (Gore-
lick et al., 2017; Pekel et al., 2016). We defined inundation as containing one or more water pixels, based 
on the JRC data. The JRC product uses a multi-step expert system to identify water and filter out clouds, 
shadows, and other bad pixels on a monthly time interval. When there are no valid observations for a given 
month, the pixel is labeled as water only if it was water in the months before and after. With less than 5% 
overall errors of omission, the JRC data are highly accurate, but its performance is worse for small water 
bodies, seasonal water, and/or water with standing vegetation (Pekel et al., 2016). Since many playas meet 
one or more of these conditions (e.g., 33% of the PLJV playas are smaller than 0.5 ha), the JRC product likely 
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does not capture all inundations. Nevertheless, the data are generally very accurate and is methodological-
ly consistent throughout the time series, and so we decided to proceed with the JRC data. However, our 
modeling methods are flexible enough to accommodate any calculated inundation time series as the target 
variable. If better and/or higher resolution surface water data become available in the future, it would be 
easy to retrain the model using the updated data.

Monthly precipitation, temperature, and vapor pressure deficit (VPD) were obtained from the PRISM Grid-
ded Climate historical data products (PRISM Climate Group, 2020). In the same way we calculated inun-
dation, we extracted monthly weather data for each of the 71,842 playas using Google Earth Engine from 
1984 through the end of 2018. This resulted in a time series of 3 weather variables that we could match to 
the inundation data.

Previous research has shown that the land-use/land-cover (LULC) around a playa can dramatically impact 
its inundation dynamics (Bartuszevige et al., 2012). To incorporate this into our model, we used modeled 
and historical USGS LULC data (Sohl et al., 2014, 2016), which is available as a backcasted annual data 
product from 1938 to 1992 (Sohl, Sayler, et al., 2018), historical data from 1992 to 2005, and future projec-
tions for four different emission scenarios from the IPCC's Special Report on Emissions Scenarios (the A1B, 
A2, B1, and B2 scenarios) from 2005 to 2100 (Sohl, Reker, et al., 2018). For modeling inundation between 
2005 and 2018, we used projections from the A1B scenario, which represents a focus on economic growth 
with a mixture of energy production in a globalized world (Nakicenovic et al., 2000). Since there is very 
minimal difference between the SRES scenarios between 2005 and 2018 and the overwhelming majority of 
divergence begins after 2020, scenario selection was not critical for our 1984–2018 time frame. After down-
loading the data, we extracted the fraction of each land cover type per year within a 200-m buffer of the 
center point for each playa. We used a random point sampling approach to perform the buffered extraction, 
generating 5,000 random points within each 200m buffer and then calculating the fraction of those 5,000 
that fell within the different LULC classes. This method is efficient and provides accurate estimates of the 
fraction of the buffer area that falls in each raster pixel, whereas rasterization approaches typically only in-
clude or exclude pixels in their entirety based on whether they intersect or majority intersect with the buffer. 
The code for the randomized buffer extraction is publicly available on GitHub (Solvik, 2021).

In order to capture watershed information, we used the USGS Watershed Boundary Dataset Hydrologic 
Unit Codes (HUCs). The units are organized into nested levels of detail, such that the largest units (regions 
or HUC-2 because the code contains two digits) are broken down into successive smaller units: subregions 
(HUC-4), accounting units (HUC-6), and cataloging units (HUC-8, also known as watersheds). The most 
recent data further subdivides cataloging units into HUC-10 and HUC-12 codes. We downloaded the Water-
shed Boundary Data set HUC shapefiles from the USGS website (USDA-NRCS et al., 2020) and performed 
a spatial join in QGIS to assign each playa to its HUC-8. In total, the playas fell into 140 different HUC-8 
watersheds.

2.2.  Modeling

For each month in our data, each playa is either inundated with some amount of water (represented as 
a 1) or not inundated (0). While this binary approach sacrifices the finer detail of fractional inundation 
measures, it is more robust to errors in the playa polygons and/or surface water data. It also simplifies the 
modeling problem. Our model was trained to predict probability of inundation on a monthly basis.

These data were split into train, validation, and test sets by year: all observations from 1984 to 2010 (27 years) 
were placed in the training set, observations from 2011 through 2014 (4 years) were placed in validation, 
and everything from 2015 to 2018 (4 years) was withheld as the final test set. After splitting the data into 
train, validation, and test sets, we scaled the numerical inputs to the model (e.g., monthly precipitation) by 
centering the mean to 0 and scaling to unit variance. The scaler was fit to the train set and then applied to 
the validation and test sets to avoid any information leakage that would unfairly benefit the model.

We included three categorical variables in the model: playa ID (from 0 to 71,842), HUC-8 code (one of 140 
options), and playa data source (or “author”, one of 5 author organizations). The first two were used to help 
to encode differences in inundation dynamics between playas and hydrological units that may not be cap-
tured by the continuous variables. The last, the playa data source or “author”, represents the organization 
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that provided the playa outline and metadata to the PLJV database. We included it in the model to account 
for potential small differences in how the author organizations defined and input the playa information. 
Each of these categorical variables were included via unitless embedding layers of dimension 16 (ID), 8 
(HUC-8), or 4 (author). An embedding of dimension D is a matrix that provides a vector of length D for 
each category. This is a multivariate generalization of “dummy”/indicator variables, which are embeddings 
of dimension 1. For example, the embedding of playa ID is a matrix with 71,842 rows and D = 16 columns. 
For any one playa, the length 16 vector corresponding to one row can represent features unique to that par-
ticular playa. In total, the set of all such vectors can represent features of every particular playa and account 
for differences that are not explained by other model inputs.

We used pytorch's LSTM implementation (torch.nn.LSTM) with binary cross entropy as the loss function. 
After experimenting with different network sizes and evaluating performance against the validation set, we 
settled on a hidden layer with 128 dimensions, an ID embedding with 16 dimensions, HUC-8 embedding 
with 8 dimensions, and data source/author embedding with 4 dimensions (“author” represents the organi-
zation that provided the playa polygon and attributes to the PLJV database). Excluding the embeddings, the 
input consisted of 25 features (Table 1). The model was trained using the Adam optimizer with a starting 
learning rate of 0.01 and a multiplicative decay (gamma) of 0.85 every five epochs. Weight regularization 
was used, with an L2 penalty of 3.0 × 10−16. When validation loss did not improve for 16 consecutive epochs, 
training was halted and the model state from the best-performing epoch was saved in order to prevent over-
fitting. In this case, the model trained for 38 epochs and so the model weights at epoch 22 were saved. The 
LSTM was trained on an AWS EC2 instance with a single NVIDIA T4 GPU. The model output inundation 
probabilities for each playa and each month in the data set, but modern neural networks often display over-
confidence in probability predictions. To address this, we calibrated the outputs using isotonic regression 
(Zadrozny & Elkan, 2002). As a baseline for comparison, we also fitted a logistic regression model on the 
same data, withholding 2014–2018 as a test set for evaluation.

The data processing and modeling code is publicly available on GitHub (Solvik, 2020). The input data are 
publicly available on figshare (Solvik et al., 2021).

3.  Results
3.1.  Playa Inundation Record Overview

Of the 71,842 playas in the PLJV probable playas data set, 73% did not have a record of inundation during 
the 34-year time series generated from JRC surface water data (Figure 1), likely an underestimate of actual 
inundation frequency. The JRC data have higher omission errors for seasonal water and small water bodies 
and so it likely overlooks inundation of many of the smaller, ephemeral playas. Out of the playas smaller 
than the median size (1.09 ha), 94% of them had no record of inundation according to the JRC surface water 
data. Playas in the southern half of the region (New Mexico, Oklahoma, and Texas) were much more likely 
to be inundated at least once compared to playas in the north (Colorado, Kansas, and Nebraska). This dif-
ference may be explained by the north tending to have smaller (median playa size is 0.78 vs. 1.09 ha in the 
whole data set) and shallower playas located in croplands (74% farmed versus 63% in the whole data set).

Feature category Feature names

Monthly weather data (3 features) Temperature, precipitation, vapor pressure deficit (VPD)

PLJV playa attributes (9 features) Playa area (in acres), mean inundation frequency (1984–2010), distance to road (in feet), 
saturated thickness of the High Plains aquifer in 2013, and binary flags for whether the 
playa was: healthy, farmed, hydrologically modified, and/or part of a cluster

Land cover fraction (13 features) Fraction of each Sohl et al. LULC code: water (1), urban (2), clearcut (3), mining (6), barren 
(7), deciduous (8), evergreen (9), mixed (10), grassland (11), shrubland (12), cropland 
(13), pasture (14), wetland (15, 16)

Categorical (3 features, passed through embedding layers) Playa ID (one of 71,842 values), HUC-8 code (one of 140 values), Author (one of five values)

Table 1 
Input Features for LSTM
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3.2.  Overall Model Performance and Probability Calibration Results

The LSTM was able to achieve good performance on the validation and test sets, with F1-scores of 0.491 
and 0.522, respectively. Compared to the logistic regression baseline (test F1 = 0.399), the LSTM performed 
much better. Various performance metrics are shown in Table 2 Since accuracy alone is inflated for imbal-
anced data sets such as ours (where most observations are 0/non-inundated), we consider the other met-
rics, including AUC and F1-Score, more reliable indicators of model performance. As expected, the model 
achieved a higher AUC score and better (i.e., lower) loss on the validation set compared to the test, and the 
Receiving Operating Characteristic curve (ROC curve, Figure 2) shows excellent performance. However, 
the test set's precision, recall, and F1-scores were all higher than the validation set. This could be due to the 
drought period during the validation set or a result of the cutoff used to decide whether a prediction was a 
1 or 0 (we used 0.25 based on validation F1 performance).

The model displayed some overfitting to the training set (F1 = 0.644). After experimenting with various 
forms and magnitudes of regularization—as well as different initial learning rates and learning rate decay 

Figure 1.  Map of the 71,842 playas in the PLJV data set.
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schedules—we found that an L2 weight penalty of 3.0 × 10−16 and initial learning rate of 0.01 had the best 
performance on the validation set, despite some overfitting.

Before probability calibration, the model displayed some overconfidence in its inundation probability pre-
dictions in the validation and test sets. By using isotonic regression to calibrate the outputs, the actual and 
predicted inundation probabilities were brought in line (Figure 3), although for the training set the model is 
slightly underconfident after calibration. Also, the F1-score on the validation and test sets improved slightly 
(scores in Table 2 are after calibration).

When we look at model performance for individual playas, performance varies. Generally, performance 
is excellent for playas that had no record of inundation during the 34-year time span, a sign that the playa 
ID embedding is working well. The model generally can predict inundation well, with consistent accura-
cy across playa sizes and attributes. The test F1-score was 0.524 for playas smaller than the median size 
of 1.09  ha and 0.521 for playas larger than the median. Performance was worse for farmed playas (test 
F1 = 0.429) than unfarmed (test F1 = 0.557), but better for hydrologically modified playas than unmodified 
(0.558 vs. 0.499).

To illustrate the LSTM's performance on individual playas, Figure 4 shows the true and predicted inunda-
tion time series for 3 playas: the one with the best test loss, the one with the worst, and the one with the 
median. In the case of the best performing playa, we see that the model ably learns to predict playa inunda-
tion, including during the dry validation period and the single inundation spike during the test period (of 
which the model had no prior knowledge). In the case of the worst, the playa had no record of inundation 
during the training period and so the model is unable to replicate the sudden inundation pattern that begins 
in 2014. In the case of the median (and many others), the model identifies most inundation spikes but has 
a handful of false positives and false negatives throughout.

Accuracy BCE loss AUC Precision Recall F1-score

Train 0.979 0.0454 0.986 0.581 0.722 0.644

Validation 0.978 0.0464 0.972 0.450 0.541 0.491

Test 0.959 0.0863 0.959 0.474 0.580 0.522

LogReg test (Baseline) 0.944 0.117 0.895 0.334 0.488 0.399

Note. For calculating precision, recall, and F1, a binary cutoff of 0.25 was used (except for the logistic regression 
baseline, where a cutoff of 0.1 yielded better results).

Table 2 
Final Model Performance on Train, Validation, and Test Sets as Well as the Logistic Regression Baseline

Figure 2.  Validation and test set receiver operating characteristic (ROC) curve.
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Although individual playa performance varies somewhat, the model performs excellently at the regional 
scale. Figure 5 shows the predicted inundation fraction (the fraction of playas inundated during any given 
month) for all playas in the data set compared to the ground-truth inundation fraction. The predictions 
track the ground truth very closely, even during the drought in the validation set (from 2011 to 2013, at its 
most extreme in 2012) when inundation drops steeply. The accuracy decreases somewhat during the valida-
tion and test periods (train RMSE = 0.0059, validation RMSE = 0.0083, and test RMSE = 0.017), but still the 
predictions match the ground truth well, a sign that the model is able to successfully generalize to unseen 
data with only modest overfitting. Based on these results, it seems that prediction errors for individual pla-
yas average out at the regional scale, producing accurate regional inundation estimations even though the 
model may over or underestimate inundation for individual playas.

Figure 3.  Reliability diagrams for training, validation, and test sets before and after isotonic regression probability calibration. The model's predicted 
probabilities are binned (0–0.1, 0.1–0.2, etc.) and then the mean probability prediction for each bin is shown on the x-axis, while y-axis shows the actual 
proportion of inundation in that bin. Under the 1:1 line represents model overconfidence and above the line represents underconfidence.
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3.3.  Spatial Accuracy

We evaluated the test set loss and F1-score for each playa individually. The results are shown in Figure 6. In 
the case of playas without record of inundation, an F1-score cannot be calculated and so those were omitted 
from the map.

In terms of F1, model performance generally is better at the southern end of the range (New Mexico and 
Texas). This could be due to the higher percentage of playas that had no record of inundation in the north. 
Based on the HUC and author embeddings, the model likely learned to generally predict less inundation in 
the north, and so performance is worse for the relatively small percentage of playas in the region that exhibit 
at least some inundation.

When looking at the loss, that trend seems to reverse: the model performs worse on the playas in Texas and 
New Mexico than in Nebraska, Kansas, and Colorado. This is also explained by the high concentration of 
playas without a record of inundation in the north. The model generally handles playas without a record of 
inundation very well and can more easily learn to predict no inundation throughout their entire time series, 
which leads to a low (i.e., better) loss. Recall that playas that had no record of inundation are not included 
in the F1 map, since F1 is not defined if there are no true positives.

Figure 4.  Examples of individual playa inundation versus post-calibration predicted inundation probability timelines. (a) Is the playa with the best test loss 
(excluding playas without record of inundation), (b) is the playa with the median test loss, and (c) is the playa with the worst.

Figure 5.  Simulated fraction of playas inundated for each month in the time series.
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4.  Discussion
Overall, the LSTM captures inundation dynamics of individual playas reasonably well and captures inunda-
tion at regional scales even better. To our knowledge, no other studies have attempted to model individual 
playa inundation status on a monthly basis over many years for a large region, but some studies have mod-
eled playa inundation status based on inundation status of other playas at the same point in time (i.e., mod-
eling inundation across playas rather than across time). Uden et al. (2015) used a GLMM to model inunda-
tion and ponded area of playas in the Rainwater Basin in south-central Nebraska at two time points (2004 
and 2006–2009) as well as using those models to predict playa inundation in 2050. Their binary inundation 
model yielded a cross-validation AUC score of 0.79 versus our test set AUC of 0.959. While our LSTM mod-
el compares favorably, the two modeling problems are not analogous and both time series and time-fixed 
models can help us understand the current and future conditions of playa wetlands. Because LSTM models 
are able to capture complex (e.g., nonlinear and nonstationary) dynamics, our approach lends flexibility 
to hydrological predictions. If sufficient inundation, Meteorological, and landscape data are available, this 
approach could allow for near term inundation forecasting and playa network time series reconstruction.

We were limited by the resolution and accuracy of available playa, weather, and surface water data. The JRC 
surface water product has 30-m spatial resolution, which is too large to capture precise playa inundation. 
Further, due to inconsistent Landsat data availability and its 30-m resolution, the JRC product performs best 
on large and permanent water bodies that are clear of vegetation (Pekel et al., 2016). Visual inspection of 
the JRC data showed that it may frequently miss minor inundation events, particularly for smaller playas, 
playas which are very rarely inundated, and/or those with standing vegetation. This likely explains why 
such a large percentage of the playas had no record of inundation according to the JRC product during our 
34-year time series. A more sensitive playa inundation record could boost our model's performance and 
value to conservation practitioners. Inundation mapping continues to improve thanks to the application 
of new techniques and technologies, including LiDAR (Huang et al., 2014). Tang et al. demonstrated that 
applying a threshold to Tasseled Cap Wetness-Greenness Difference can effectively detect playa inundation 

Figure 6.  Map of test loss (a) and test F1 scores (b) for each playa. For loss, lower scores (darker colors) are better. For F1, higher scores (lighter colors) are 
better.
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in Nebraska (Tang et al., 2016), but obtaining high quality, high resolution, and monthly imagery across the 
entire western Great Plains is challenging. The PLJV is currently developing a surface water classification 
approach specifically for detecting playa wetness. When that or another higher resolution surface water 
data product becomes available, it would be easy to retrain our playa model on new inundation data. This 
would likely produce more accurate inundation predictions, especially for smaller, more ephemeral playas.

The relatively coarse resolution of the JRC data was one reason why we decided to model inundation as a 
binary variable: no inundation versus at least partial inundation. We originally planned to model inunda-
tion as a continuous fraction between 0 (no inundation) and 1 (fully inundated), but the LSTM frequently 
diverged during training when attempting to model the continuous fraction. Modeling binary inundation 
proved to be much more stable, and at 30m resolution the JRC surface water was unlikely to capture small 
changes in inundation fraction anyways. However, binary inundation predictions are less detailed than 
continuous inundation fraction predictions, especially for large playas where even a 10% difference in inun-
dated area could indicate a sizable difference in water volume. Nevertheless, our binary approach provides 
playa conversation planners with the most essential information: whether any part of the playa is likely to 
be wet during a given month.

The LULC and climate data were also limited by their spatial resolution (500 m for the Sohl et al. LULC data 
and 4 km for the PRISM climate product). In the case of the LULC data, the land cover immediately sur-
rounding a playa has important effects on inundation (Bartuszevige et al., 2012). With a 500m resolution, 
the Sohl et al. data may not fully capture variations in LULC near playas. The PRISM climate data do not 
capture localized rain storms, which may contribute to playa inundation. Further, many playas could fall 
within the same 4 km PRISM grid cell. Higher resolution LULC and climate data would likely boost model 
performance. Additionally, the LSTM can only model inundation of playas identified in the PLJV probable 
playas data set and if there are unmapped playas, our approach cannot capture their inundation patterns 
until they are added to the data set.

To examine the extent to which our study period affected modeling results, we reran the model using earlier 
validation and test sets: 2003–2006 and 2007–2010, respectively (instead of 2011–2014 and 2015–2018). This 
left 1984–2002 (18 years) available as training data, leaving us about 30% less training data than from the full 
1984–2010 period (26 years) we used in the main model. The test F1-Score was 0.485, which is lower than 
the test F1 for the full model (0.522). However, the smaller training data set size (about 30% smaller) may 
explain this difference, since less training data typically makes for a worse model.

Although the LSTM exhibited good performance, there are limitations associated with black box deep learn-
ing methods. First, neural networks in general and LSTMs in particular are not as easy to interpret as more 
traditional time series models. For example, LSTMs do not readily permit interpretable coefficients that 
represent the effect of precipitation, temperature, etc. On the model's predictions. Where other modeling 
approaches, such as the generalized linear mixed model used by Uden et al. (2015), can provide us with 
more specific insight on the physical drivers of playa inundation, neural networks are comparatively in-
scrutable, but often very effective as shown here. Neural network interpretability is a crucial and constantly 
advancing field of research. Second, this model accounts for unmodeled heterogeneity among playas using 
playa ID embeddings: learned vector representations that allow the model behavior to vary from playa to 
playa. These embeddings are learned using training data, and in a time series setting the training data con-
sist of historical observations. In a prediction setting, if the hydrology of a playa abruptly changes due to 
modification in the future, embeddings may not capture subsequent inundation dynamics because they are 
learned using historical data. Finally, no hydrological dynamics are included in the model. A physics-guided 
approach that constrains the LSTM with a science-based dynamical model of inundation might allow for 
a compromise between the flexibility of a neural network, and the physical consistency of a science-based 
hydrological model (e.g., Karpatne et al., 2018).

This work points to a number of future directions that could inform habitat conservation in the playas region. 
Conservation has been shown to improve playa wetland health (Zhang et al., 2020) but, given the vastness 
of the western Great Plains, prioritizing where to focus conservation and restoration efforts can be challeng-
ing. Using future projections of climate and land cover data, this model could be used to predict inundation 
futures at the individual playa and regional scales, which can be used together to plan conservation efforts, 



Water Resources Research

SOLVIK ET AL.

10.1029/2020WR029009

11 of 12

particularly in combination with previous results that indicate the importance of maintaining a network 
of healthy playas (Albanese & Haukos, 2017). These inundation futures are important for understanding 
how warmer climate futures and/or land cover change might alter inundation, groundwater recharge, and 
availability of critical playa wetland habitat for migratory birds in the Central Flyway (Gitz & Brauer, 2016; 
Sohl, 2014; Sohl et al., 2012; Starr & McIntyre, 2020). Beyond availability, connectivity is also important for 
these critical wetlands, and inundation futures could be used to understand the range of spatiotemporal 
network dynamics (McIntyre & Strauss, 2013).

5.  Conclusions
Playas are critical wetland habitats in the Great Plains, and predicting inundation as a function of land cov-
er, playa characteristics, and climate is important for understanding regional hydrology and wildlife habitat 
availability. Using an LSTM and a monthly historical record over three decades, we demonstrate that da-
ta-driven prediction of future inundation status is possible and may exhibit particularly good performance 
at a regional scale, with a spectrum of results for individual playas.
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